Updated SDKs
- JijModeling latest version - jijmodeling v1.1.1
- JijZept Client latest version - jijzept v1.16.8
Please update your SDKs to the latest version.
New Features
General Update
We are pleased to announce the latest updates to JijZept.
Released
jijzept v1.16.8
, which now supports pydantic v2. This enhances JijZept's performance by leveraging the speed of Rust-based Pydantic. Update your installation with the following command:pip install -U jijzept
Released
jijmodeling v.1.1.1
andjijmodeling v.1.1.0
, which now support the latest version ofjijzept
. Update your installation with the following command:pip install -U jijmodeling
The features of jijmodeling v.1.1.1
and jijmodeling v.1.1.0
are as follows:
- (jijmodeling v1.1.0) Added a loader for the MPS format used in MIPLIB. If you already have an MPS file, you can read it into
jijmodeling.Problem
and instance data as follows:import jijmodeling as jm
problem, instance_data = jm.load_mps("testset/data.mps.gz") - (jijmodeling v1.1.0) Added a feature to easily fetch data published by MIPLIB. For example, to fetch data from https://miplib.zib.de/instance_details_50v-10.html, use:
import jijmodeling.dataset
miplib = jijmodeling.dataset.Miplib(verbose=False) # Downloads data if not cached locally (~600MB)
problem, instance_data = miplib.load("50v-10") - (jijmodeling v1.1.1) Significantly reduced the time required to instantiate the
dataset.Miplib
class in a Jupyter Notebook environment. - (jijmodeling v1.1.0) You can retrieve statistical information on the data published by MIPLIB using
miplib.instance_statistics
. Here's how to filter instances with no continuous variables usingpandas
:import pandas
import jijmodeling.dataset
miplib = jijmodeling.dataset.Miplib(verbose=False)
df = pandas.DataFrame(miplib.instance_statistics).T
df[df["continuous"] == 0]
Known Issues
instance_data
is stored as a dense matrix, making it unsuitable for handling large matrix sizes, such as those in https://miplib.zib.de/instance_details_unitcal_7.html.
Bug Fixes
- Various bug fixes related to the
from_old_sampleset
function which converts oldSampleSet
objects to a new, soon-to-be-changedSampleSet
object (experimental.SampleSet
).- Fixed issues with empty
dict
objects inexperimental.Violation
andexperimental.EvaluationResult
. - Fixed an issue where multiple
experimental.VarValues
objects were created instead of a single one.
- Fixed issues with empty
- (jijmodeling v1.1.0) Fixed an issue where the
experimental
module, which contains the newSampleSet
object, could not be directly imported usingimport jijmodeling.experimental
orjijmodeling.jijmodeling.experimental
.
We continue to develop JijZept to make it more user-friendly and valuable. If you have any feedback, feel free to let us know.