evaluate
class CalculatedExpression
CalculatedExpression(objective: 'float', constraint: 'dict[str, dict[tuple[int, ...], float]]', penalty: 'dict[str, dict[tuple[int, ...], float]]')
class CompiledInstance
CompiledInstance: object return compile_model
method.
Attributes
- sense(jijmodeling.ProblemSense) : problem sense minimize or maximize.
- objective(SubstitutedExpression) : objective expression.
- constraint(dict[str, dict[tuple[int, ...], SubstitutedExpression]]) : constraints. str key represents name of constraint. tuple[int,...] is values of forall index.
- penalty : dict[str, dict[tuple[int, ...], SubstitutedExpression]]
- var_map : VariableMap
- data : InstanceData
- problem : jijmodeling.InstanceData
Examples
import jijmodeling as jm
import jijmodeling_transpiler as jmt
n = jm.Placeholder("n")
x = jm.Binary("x", (n, n))
i = jm.Element("i", n)
problem = jm.Problem("sample")
problem += x[:, :]
problem += jm.Constraint("onehot", x[:, i], forall=i)
compiled_instance = jmt.core.compile_model(problem, {"n": 2}, {})
compiled_instance
CompiledInstance(
objective=SubstitutedExpression(
linear=LinearSubstitutedExpr(coeff={0: 1.0, 1: 1.0, 2: 1.0, 3: 1.0}, constant=0.0),
nonlinear=None),
constraint={
'onehot': {
(0,): SubstitutedExpression(
linear=LinearSubstitutedExpr(coeff={0: 1.0, 1: 1.0}, constant=0.0),
nonlinear=None),
(1,): SubstitutedExpression(
linear=LinearSubstitutedExpr(coeff={2: 1.0, 3: 1.0}, constant=0.0),
nonlinear=None)}
},
penalty={},
var_map=VariableMap(var_map={'x': {(0, 0): 0, (0, 1): 2, (1, 0): 1, (1, 1): 3}},
var_num=4,
integer_bound={}),
...
)