Skip to main content

Traveling Salesman Problem

The Travelling Salesman Problem (TSP) is the problem of finding the shortest tour salesman to visit every city. It is known as an NP-hard problem. There are several well-known linear formulations for TSP. However, here we show a quadratic formulation for TSP because it is more suitable for Annealing.

Mathematical model

Let's consider nn-city TSP.

Decision variable

A binary variables xi,tx_{i,t} are defined as:

xi,t={1 the salesman visits t-th city i,0 otherwisex_{i,t} = \begin{cases} 1~\text{the salesman visits $t$-th city $i$,}\\ 0~\text{otherwise}\\ \end{cases}

for all i{0,...,n1}i \in \{0, ..., n-1\} and t{0,...,n1}t \in \{0, ..., n-1\}. xi,tx_{i,t} represents the salesman visits city ii at tt when it is 1.


We have to consider two constraints;

  1. A city is visited only once.

    txi,t=1, i\sum_t x_{i, t} = 1, ~\forall i
  2. The salesman visits only one city at a time.

    ixi,t=1, t\sum_i x_{i, t} = 1, ~\forall t

The following figure illustrates why these two constraints are needed for xi,tx_{i,t} to represent a tour.

Objective function

The total distance of the tour, which is an objective function to be minimized, can be written as follows using the product of xx representing the edges used between tt and t+1t+1.

i,j,tdi,jxi,txj,(t+1)modn\sum_{i,j,t} d_{i, j}x_{i, t}x_{j, (t+1)\mod n}

where di,j0d_{i, j} \geq 0 is a distance between city ii and city jj. "modn\mod n" is used to include in the sum the distance from the last city visited back to the first city visited.

nn-city TSP.

minxi,jdi,jtxi,txj,(t+1)modns.t. ixi,t=1, ttxi,t=1, ixi,t{0,1}\begin{aligned} \min_x \sum_{i, j} &d_{i,j} \sum_t x_{i,t} x_{j, (t+1) \mod n}\\ \mathrm{s.t.}~&\sum_i x_{i, t} = 1,~\forall t\\ &\sum_t x_{i, t} = 1, ~\forall i\\ &x_{i, t} \in \{0, 1\} \end{aligned}

where di,jd_{i,j} is distance between city ii and city jj.

Modeling by JijModeling

Next, we show an implementation using JijModeling. We first define variables for the mathematical model described above.

import jijmodeling as jm

# define variables
d = jm.Placeholder('d', ndim=2)
N = d.len_at(0, latex="N")
i = jm.Element('i', belong_to=(0, N))
j = jm.Element('j', belong_to=(0, N))
t = jm.Element('t', belong_to=(0, N))
x = jm.BinaryVar('x', shape=(N, N))

d is a two-dimensional array representing the distance between each city. N denotes the number of cities. This can be obtained from the number of rows in d. i, j and t are subscripts used in the mathematical model described above. Finally, we define the binary variable x to be used in this optimization problem.

# set problem
problem = jm.Problem('TSP')
problem += jm.sum([i, j], d[i, j] * jm.sum(t, x[i, t]*x[j, (t+1) % N]))
problem += jm.Constraint("one-city", x[:, t].sum() == 1, forall=t)
problem += jm.Constraint("one-time", x[i, :].sum() == 1, forall=i)

jm.sum([i, j], d[i, j] * jm.sum(t, x[i, t]*x[j, (t+1) % N])) represents objective function i,j,tdi,jxi,txj,(t+1)modn\sum_{i,j,t} d_{i, j}x_{i, t}x_{j, (t+1)\mod n}. The following jm.Constraint("one-city", x[:, t] == 1, forall=t) represents a constraint to visit one city at one time. x[:, t] allows us to express ixi,t\sum_i x_{i, t} concisely.

We can check the implementation of the mathematical model on the Jupyter Notebook.


Problem:TSPmini=0N1j=0N1di,jt=0N1xi,txj,(t+1),t=1t{0,,N1}one-time1=0N1xi,1=1i{0,,N1}wherex2-dim binary variable\begin{array}{cccc}\text{Problem:} & \text{TSP} & & \\& & \min \quad \displaystyle \sum_{i = 0}^{N - 1} \sum_{j = 0}^{N - 1} d_{i, j} \cdot \sum_{t = 0}^{N - 1} x_{i, t} \cdot x_{j, \left(t + 1\right) \bmod N} & \\\text{{s.t.}} & & & \\ & \text{one-city} & \displaystyle \sum_{\ast_{0} = 0}^{N - 1} x_{\ast_{0}, t} = 1 & \forall t \in \left\{0,\ldots,N - 1\right\} \\ & \text{one-time} & \displaystyle \sum_{\ast_{1} = 0}^{N - 1} x_{i, \ast_{1}} = 1 & \forall i \in \left\{0,\ldots,N - 1\right\} \\\text{{where}} & & & \\& x & 2\text{-dim binary variable}\\\end{array}

Prepare an instance

We prepare the number of cities and their coordinates. Here we select a metropolitan area in Japan using geocoder.

import geocoder as gc
import numpy as np

# set the name list of traveling points
points = ['茨城県', '栃木県', '群馬県', '埼玉県', '千葉県', '東京都', '神奈川県']
# get the latitude and longitude
latlng_list = []
for point in points:
location = gc.osm(point)
# make distance matrix
num_points = len(points)
inst_d = np.zeros((num_points, num_points))
for i in range(num_points):
for j in range(num_points):
a = np.array(latlng_list[i])
b = np.array(latlng_list[j])
inst_d[i][j] = np.linalg.norm(a-b)
# normalize distance matrix
inst_d = (inst_d-inst_d.min()) / (inst_d.max()-inst_d.min())

geo_data = {'points': points, 'latlng_list': latlng_list}
instance_data = {'d': inst_d}

Solve by JijZept's SA

We solve this problem using JijZept JijSASampler. We also use the parameter search function by setting search=True.

import jijzept as jz

# set sampler
sampler = jz.JijSASampler(config="config.toml")
# solve problem
multipliers = {"one-city": 0.5, "one-time": 0.5}
results = sampler.sample_model(problem, instance_data, multipliers, num_reads=100, search=True)

Check the results

  • results.record: store the value of solutions
  • results.evaluation: store the results of the evaluation of the solutions.

First, check the results of the evaluation.

# Show the result of evaluation of solutions
max_show_num = 5
print("Energy: ",[:max_show_num]) # Energy is objective value of QUBO
print("Objective: ", results.evaluation.objective[:max_show_num]) # Objective values of original constrained problem
print("one-city violation: ", results.evaluation.constraint_violations["one-city"][:max_show_num]) # violation of constraints
print("one-time violation: ", results.evaluation.constraint_violations["one-time"][:max_show_num]) # violation of constraints
Energy:  [-4.11652422 -4.12254763 -4.12254763 -4.12254763 -4.12254763]
Objective: [1.88347592 2.87745219 2.87745219 2.87745219 2.87745219]
one-city violation: [1. 0. 0. 0. 0.]
one-time violation: [1. 0. 0. 0. 0.]

Extract feasible solutions and an index of the lowest solution

From the results, we extract the feasible solutions and show the lowest value of the objective function among them.

import numpy as np

feasibles = results.feasible()
objectives = np.array(feasibles.evaluation.objective)
lowest_index = np.argmin(objectives)
print(f"Lowest solution index: {lowest_index}, Lowest objective value: {objectives[lowest_index]}")
Lowest solution index: 0, Lowest objective value: 2.8774521894834977

Check the solution

Finally, we get the solution from JijZept.

# check solution
nonzero_indices, nonzero_values, shape = feasibles.record.solution["x"][lowest_index]
print("indices: ", nonzero_indices)
print("values: ", nonzero_values)
indices:  ([0, 1, 2, 3, 4, 5, 6], [0, 6, 5, 4, 1, 2, 3])
values: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

Draw tour

N_value = len(geo_data['latlng_list'])
tour = np.zeros(N_value, dtype=int)

i_value, t_value = nonzero_indices
tour[t_value] = i_value

tour = np.append(tour, [tour[0]])
array([0, 4, 5, 6, 3, 2, 1, 0])

We check the salesman’s route.

import matplotlib.pyplot as plt

position = np.array(geo_data['latlng_list']).T[[1, 0]]


plt.plot(*position, "o")
plt.plot(position[0][tour], position[1][tour], "-")

[[140.4703384 139.8096549 139.033483  139.4160114 140.2647303 139.7744912
139.374753 ]
[ 36.2869536 36.6782167 36.52198 35.9754168 35.549399 35.6840574


['茨城県' '千葉県' '東京都' '神奈川県' '埼玉県' '群馬県' '栃木県' '茨城県']